Marco Flores
Analíti a
k
5
Revista de Análisis Estadístico
Journal of Statistical Analysis
Operational Risk Capital.
Federal Reserve Bank of Bos-
ton.
[8] Feria J. and Jimenez E. and Martín J. (2007) :
El Modelo
de Distribución de Pérdidas Agregadas (LDA), una Aplica-
ción al Riesgo Operacional.
Departamento de Dirección
de Empresas, Universidad Pablo de Olavide.
[9] Fontnouvelle P., Rosengren E. and Jordan J. (2004) :
Im-
plications of Alternative Operational Risk Modeling Tech-
niques.
Federal Reserve Bank of Boston.
[10] Gilli M. and Kellezi E. (2006) :
An application of Extreme
Value Theory for Measuring Financial Risk
, Computatio-
nal Economics 27(1), pp. 1-23,
[11] Martinez W. and Martinez A. (2002) :
Computatio-
nal Statistics Handbook with Matlab.
Chapman &
Hall/CRC.
[12] Lambrigger D., Shevchenko P. andWuthrich M. (2007)
:
The Quantification of Operational Risk using Internal Da-
ta, Relevant External Data and Expert Opinions.
Journal
of Operational Risk 2(3), pp. 3-27.
[13] Law A. and Kelton D. (1992) :
Simulation, Modeling and
Analysis.
McGraw-Hill Inc..
[14] SAS System, www.sas.com
[15] Stroustrup B. (1991) :
The C++ Programming Language.
2nd edition. Addison Wesley.
[16] Peters G. and Sisson S. (2006) :
Bayesian Inference, Monte
Carlo Sampling and Operational Risk. Department of Mat-
hematics and Statistics.
University of New South Wales,
Australia 14
[17] Torre D. de la, Oris L. Tavecchia D.
Fractal Estimations
and Simulations in Operational Risk Analysis.
48
Analítika,
Revista de análisis estadístico
, 3 (2013), Vol. 5(1): 39-48