A Review of Artificial Neural Networks: How Well Do They Perform in Forecasting Time Series?
Analíti a
k
6
Revista de Análisis Estadístico
Journal of Statistical Analysis
Kara, Y., M. A. Boyacioglu y O. K. Baykan. 2011.
Predicting
direction of stock price index movement using artificial neural
networks and support vector machines: the sample of the is-
tanbul stock exchange
. Expert Systems with Applications,
38(5): 5311–5319.
Karathanasopoulos, A., K. Theofilatos, P. Leloudas y S. Li-
kothanassis. 2010.
Modeling The ASE 20 Greek Index Using
Artificial Neural Networks Combined With Genetic Algo-
rithms
. 6352, Artificial Neural Networks, Lecture Note in
Computer Science.
Khashei, M. y M. Bijari. 2011.
A novel hybridization of artifi-
cial neural networks and arima models for time series forecas-
ting
. Applied Soft Computing Journal, 11(2): 2664–2675.
Kiani, K. M. y T. L. Kastens. 2008.
Testing forecast accuracy
of foreign exchange rate: Predictions from feedforward and va-
rious recurrent neural network architecture
. Computational
Economics, 32(4): 383–406.
Kodogiannis, V. y A. Lolis. 2002.
Forecasting financial time se-
ries using neural network and fuzzy system-based techniques
.
Neural Computing and Applications, 11: 90–102.
Kuan, C. M. y T. Liu. 1995.
Forecasting exchange rate using
feedforward and recurrent neural networks
. Journal of Ap-
plied Econometrics, 10(4): 347–364.
Leung, M., A. Chen y H. Daouk. 2000a.
Forecasting exchan-
ge rate using general regression neural networks
. Computers
and Operations Research, 27(11): 1093–1110.
Leung, M. T., H. Daouk y A. S. Chen. 2000b.
Forecasting
stock indices: A comparison of classification and level esti-
mation models
. International Journal of Forecasting, 16(2):
173–190.
Lu, C. y J. Wu. 2011.
An efficient cmac neural network for
stock index forecasting
. Expert Systems with Applications,
38(12): 14357–15598.
McNelis, P. D. 2005.
Neural Networks in Finance: Gaining Pre-
dictive Edge in the Market
. Elsevier Academic Press, UK.
Medsker, L., E. Turba y R. R. Trippi. 1996.
Neural Networks
in Finance and Investing: Using Artificial Intelligence to Im-
prove Real-World Performance
. Neural Networks Funda-
mentals for Financial Analysts.
Mehrotra, K., C. K. Mohan y S. Ranka. 2000.
Elements of Ar-
tificial Neural Networks
. The MIT Press, USA.
Mostafa, M. M. 2010.
Forecasting stock exchange movements
using neural networks: Empirical evidence from kuwai
. Ex-
pert systems with applications, 37(9): 6302–6309.
Paliwal, M. y U. A. Kumar. 2009.
Neural networks and sta-
tistical techniques: A review of application
. Expert Systems
with Applications, 36(1): 2–17.
Perez-Rodriguez, J. V., S. Torra y J. Andrada-Felix. 2005.
Star and ann models: Forecasting performance on the spanish
ibex-35 stock index
. Journal of Empirical Finance, 12(3):
490–509.
Pham, D. T. y X. Lui. 1995.
Neural Networks for Identification,
Prediction and Control
. Springer, USA.
Portela, A., N. Affonso da Costa y L. Coelho. 2007.
Compu-
tational intelligence approaches and linear models in case stu-
dies of forecasting exchange rate
. Expert Systems with Ap-
plications, 33(4): 816–823.
Rada, R. 2008.
Expert systems and evolutionary computing for
financial investing: A review
. Expert Systems with Appli-
cations, 34(4): 2232–2240.
Selvaratnam, S. y M. Kirley. 2006.
Predicting Stock Market
Time Series Using Evolutionary Artificial Neural Networks
with Hurst Exponent Input Window. Lecture Notes in Artifi-
cial Intelligence
. Springer.
Sharth, M. y M. C. Medeiros. 2009.
Asymmetric effects and
long memory in the volatility of dow jones stock
. Internatio-
nal Journal of Forecasting, 25(2): 198–212.
Shen, W., X. Guo, C. Wu y D. Wu. 2011.
Forecasting stock in-
dices using radial basis function neural networks optimized by
artificial fish swarm algorithm
. Knowledge-Based Systems,
24(3): 427–443.
Sitte, R. y J. Sitte. 2002.
Neural networks approach to the ran-
dom walk dilemma of financial time series
. Applied Intelli-
gence, 3(16): 163–171.
Thawornwong, S. y D. Enke. 2004.
The adaptive selection of
financial and economic variables for use with artificial neural
networks
. Neurocomputing, 56: 205–232.
Venegas-Martínez, F. y A. Islas-Camargo. 2005.
Volatilidad
de los mercados bursátiles de américa latina: efectos de largo
plazo
. Comercio Exterior, 55(1): 936–947.
Yumlu, S., F. S. Gurgen y N. Okay. 2005.
A comparison of
global, recurrent and smoothed-piecewise neural models for is-
tanbul stock exchange (ise) prediction
. Pattern Recognition
Letter, 26(13): 2093–2103.
Zhang, G. P. y V. L. Berardi. 2001.
Time series forecasting with
neural network ensembles: An application for exchange rate
prediction
. Journal of the Operational Research Society,
52(6): 652–664.
Analítika,
Revista de análisis estadístico
, 3 (2013), Vol. 6(2): 7-15
15