Página 20 - ANAlitica7

Versión de HTML Básico

Christophe Profeta
Analíti a
k
7
Revista de Análisis Estadístico
Journal of Statistical Analysis
e
ν
y
I
2
γ
(
2
α
e
β
y
t
β
2
)
dy
=
1
β
+
0
dz
z
e
α
z
exp
(
1
2
z
β
2
)
R
exp
(
1
2
z
β
2
e
2
β
y
)
e
ν
y
I
2
γ
(
e
β
y
z
β
2
)
dy
.
We may therefore invert the Laplace transform in
α
to ob-
tain:
P
0
(
τ
λ
0
e
2
β
(
B
s
+
ν
s
)
ds
dz
)
=
λ
z
β
e
1
2
z
β
2
R
exp
(
1
2
z
β
2
e
2
β
y
)
e
ν
y
I
2
λ
+
ν
2
β
(
e
β
y
z
β
2
)
dy
where
τ
λ
denotes an exponential random variable with pa-
rameter
λ
independent from
B
.
Note that this last Laplace transform may be also inverted
thanks to the Hartman-Watson function
θ
r
given by:
I
2
λ
(
r
) =
+
0
e
λ
t
θ
r
(
t
)
dt
which, from Yor [19], admits the representation:
θ
r
(
t
) =
r
2
π
3
t
+
0
e
π
2
y
2
2
t
r
cosh
(
y
)
sinh
(
y
)
sin
(
π
y
t
)
dy
.
4.4 One-sided Yor’s functional
Take
a
=
α
and let
b
+
. We obtain :
+
0
e
λ
t
E
0
[
e
α
t
0
e
2
β
(
B s
+
ν
s
)
1
{
B s
+
ν
s
>
0
}
ds
]
dt
=
2
ω
λ
 
K
2
γ
(
2
α
β
)
ν
+
2
λ
+
ν
2
+
+
0
e
ν
y
K
2
γ
(
2
α
β
e
β
y
)  
with
ω
λ
=
K
2
γ
(
2
α
β
) √
2
λ
+
ν
2
2
α
K
2
γ
(
2
α
β
)
.
This allows to recover the associated perpetuity, for
ν
<
0 :
E
0
[
exp
(
α
+
0
e
2
β
(
B
s
+
ν
s
)
1
{
B
s
+
ν
s
>
0
}
ds
)]
=
2
|
ν
|
K
|
ν
|
β
(
2
α
β
)
2
α
K
|
ν
|
β
+
1
(
2
α
β
)
.
We refer to Salminen & Yor [16, 17] for a comprehensive
study of this family of perpetuities.
Referencias
[1] M. A
BRAMOWITZ AND
I. A. S
TEGUN
, eds.,
Handbook
of mathematical functions with formulas, graphs, and mat-
hematical tables
, Dover Publications Inc., New York,
1992. Reprint of the 1972 edition.
[2] A. N. B
ORODIN AND
P. S
ALMINEN
,
Handbook of Brow-
nian motion—facts and formulae
, Probability and its Ap-
plications, Birkhäuser Verlag, Basel, second ed., 2002.
[3] D. C
HAMORRO
,
Algunas herramientas matemáticas para
la economía y las finanzas: el movimiento Browniano y la
integral de Wiener
, Analítika, 3 (2012), pp. 3–15.
[4] M. D
ECAMPS
, A. D
E
S
CHEPPER
, M. G
OOVAERTS
,
AND
W. S
CHOUTENS
,
A note on some new perpetuities
,
Scand. Actuar. J., (2005), pp. 261–270.
[5] D. D
UFRESNE
,
The distribution of a perpetuity, with ap-
plications to risk theory and pension funding
, Scand. Ac-
tuar. J., (1990), pp. 39–79.
[6] A. E
RDÉLYI
, W. M
AGNUS
, F. O
BERHETTINGER
,
AND
F. G. T
RICOMI
,
Tables of integral transforms. Vol.
I
, McGraw-Hill Book Company, Inc., New York-
Toronto-London, 1954. Based, in part, on notes left
by Harry Bateman.
[7] H. G
EMAN AND
M. Y
OR
,
Bessel processes, Asian op-
tions and perpetuities
, Mathematical finance, 3 (1993),
pp. 349–375.
[8] I. S. G
RADSHTEYN AND
I. M. R
YZHIK
,
Table of in-
tegrals, series, and products
, Elsevier/Academic Press,
Amsterdam, seventh ed., 2007. Translated from the
Russian, Translation edited and with a preface by
Alan Jeffrey and Daniel Zwillinger, With one CD-
ROM (Windows, Macintosh and UNIX).
[9] S. J
ANSON
,
Brownian excursion area, Wright’s constants
in graph enumeration, and other Brownian areas
, Probab.
Surv., 4 (2007), pp. 80–145.
[10] N. N. L
EBEDEV
,
Special functions and their applications
,
Dover Publications Inc., New York, 1972. Revised edi-
tion, translated from the Russian and edited by Ri-
chard A. Silverman, Unabridged and corrected repu-
blication.
[11] J. P
ITMAN AND
M. Y
OR
,
Bessel processes and infinitely
divisible laws
, in Stochastic integrals (Proc. Sympos.,
Univ. Durham, Durham, 1980), vol. 851 of Lecture No-
tes in Math., Springer, Berlin, 1981, pp. 285–370.
[12] J. W. P
ITMAN
,
One-dimensional Brownian motion and
the three-dimensional Bessel process
, Advances in Appl.
Probability, 7 (1975), pp. 511–526.
[13] A. D. P
OLYANIN AND
V. F. Z
AITSEV
,
Handbook of exact
solutions for ordinary differential equations
, Chapman &
Hall/CRC, Boca Raton, FL, second ed., 2003.
[14] C. P
ROFETA
, B. R
OYNETTE
,
AND
M. Y
OR
,
Option pri-
ces as probabilities
, Springer Finance, Springer-Verlag,
Berlin, 2010. A new look at generalized Black-Scholes
formulae.
16
Analítika,
Revista de análisis estadístico
, 4 (2014), Vol. 7(1): 7-19