Página 25 - ANAlitica8

Versión de HTML Básico

Estimación espectral de datos ambientales no equiespaciados vía el periodograma...
Analíti a
k
8
Revista de Análisis Estadístico
Journal of Statistical Analysis
[14] D. H
ESLOP AND
M. J. D
EKKERS
,
Spectral analysis of
unevenly spaced climatic time series using CLEAN: signal
recovery and derivation of significance levels using a Mon-
te Carlo simulation
, Phys. Earth Planet. Int., 130 (2002),
pp. 103–116.
[15] J. H. H
ORNE
and S. L. B
ALIUNAS
,
A prescription for pe-
riod analysis of unevenly sampled time series
, Astrophys.
J., 302 (1986), pp. 757–763.
[16] G. M. J
ENKINS
and D. G. W
ATTS
,
Spectral analysis and
its applications
, Holden-Day, Oakland, CA, (1969).
[17] N. R. L
OMB
,
Least-squares frequency analysis of une-
qually spaced data
, Astrop. Spa. Sc., 39 (1976), pp. 447–
462.
[18] F. L
ÓPEZ
-C
APONT
,
La etapa pesquera del padre Sarmien-
to y su época: de los atúnes, y sus transmigraciones y con-
jeturas, sobre la decadencia de las almadrabas, y sobre los
medios para restituirlas.
, Caixa de Pontevedra, Ponteve-
dra, (1997).
[19] J. L
ÓPEZ
G
ONZÁLEZ
and J. R
UIZ
,
Series históricas de
capturas del atún rojo en las almadrabas del golfo de cádiz
(siglos xvi-xxi)
, Collect. Vol. Sci. Pap. ICCAT, 67 (2012),
pp. 139–174.
[20] M. E. M
ANN
and J. M. L
EES
,
Robust estimation of back-
ground noise and signal detection in climatic time series
,
Clim. Ch., 33 (1996), pp. 409–445.
[21] A. M
ATHIAS
, F. G
ROND
, R. G
UARDANS
, D. S
EESE
,
M. C
ANELA
, and H. D
IEBNER
,
Algorithms for Spectral
Analysis of Irregularly Sampled Time Series
, J. of Stat.
Soft., 11 (2004), pp. 1–27.
[22] M. M
UDELSEE
,
TAUEST: A computer program for esti-
mating persistence in unevenly spaced weather/climate time
series.
, Computers & Geosciences, 28 (2002), pp. 69–72.
[23]
,
Climate Time Series Analysis: Classical Statistical
and Bootstrap Methods
, Springer, (2010).
[24] M. M
UDELSEE
, D. S
CHOLZ
, R. R
ÖTHLISBERGER
,
D. F
LEITMANN
, A. M
ANGINI
and E. W. W
OLFF
,
Cli-
mate spectrum estimation in the presence of timescale errors
,
Nonl. Proc. in Geophys., 16 (2009), pp. 43–56.
[25] A. N
AVA
,
Fourier spectral analysis for unevenly spa-
ced, average value, data
, Computers & Geosciences, 36
(2010), pp. 853–860.
[26] A. N
UTTALL
,
Some windows with very good sidelobe
behavior.
, IEEE Trans. on Acoust., Speech and Sig. Pro-
ces., 29 (1981), pp. 84–91.
[27] E. P
ARDO
-I
GÚZQUIZA
and F. R
ODRÍGUEZ
-T
OVAR
,
Análisis espectral de series temporales de variables geológi-
cas con muestreo irregular.
, Boletín Geológico y Minero,
124 (2013), pp. 323–337.
[28] E. P
ARDO
-I
GUZQUIZA
and F. J. R
ODRÍGUEZ
-T
OVAR
,
Implemented lomb-scargle periodogram: a valuable tool for
improving cyclostratigraphic research on unevenly sampled
deep-sea stratigraphic sequences.
, Geo-Marine Letters, 31
(2011), pp. 537–545.
[29] E. P
ARDO
-I
GÚZQUIZA
and F. J. R
ODRÍGUEZ
-T
OVAR
,
Spectral and cross-spectral analysis of uneven time series
with the smoothed lomb–scargle periodogram and monte
carlo evaluation of statistical significance.
, Computers &
Geosciences, 49 (2012), pp. 207–216.
[30] D. B. P
ERCIVAL
and A. T. W
ALDEN
,
Spectral analy-
sis for physical applications
, Cambridge Univ Press, Lon-
don, (1993).
[31] J. P
OLANCO
-M
ARTÍNEZ
,
Aplicación de técnicas estadís-
ticas en el estudio de fenómenos ambientales y ecosistémi-
cos.
, PhD thesis, University of Basque Country, Espa-
ña., (2012).
[32] W. H. P
RESS
, S. A. T
EUKOLSKY
, W. T. V
ETTERLING
and B. P. F
LANNERY
,
Numerical recipes in C
, Cambridge
University Press, (1992).
[33] M. B. P
RIESTLEY
,
Spectral analysis and time series.
, Aca-
demic Press Limited, London, (1981).
[34] R D
EVELOPMENT
C
ORE
T
EAM
,
R: A Language and En-
vironment for Statistical Computing.
, R Foundation for
Statistical Computing, Vienna, Austria, (2009).
[35] D. H. R
OBERTS
, J. L
EHAR
, and J. W. D
REHER
,
Times
series analysis with clean. I. derivation of a spectrum.
, The
Astron. J., 93 (1987), pp. 968–989.
[36] P. M. R
OBINSON
,
Estimation of a time series model from
unequally spaced data.
, Stochastic Processes and their
applications, 6 (1977), pp. 9–24.
[37] E. S
CANNELL
J
R
and G. C. C
ARTER
,
Confidence bounds
for magnitude-squared coherence estimates.
, in Acous-
tics, Speech, and Signal Processing, IEEE Internatio-
nal Conference on ICASSP’78., vol. 3, IEEE, (1978),
pp. 670–673.
[38] J. D. S
CARGLE
,
Studies in astronomical time series analy-
sis. II- Statistical aspects of spectral analysis of unevenly
spaced data.
, The Astrop. J., 263 (1982), pp. 835–853.
[39]
,
Studies in astronomical time series analysis. III-
Fourier transforms, autocorrelation functions, and cross-
correlation functions of unevenly spaced data.
, The Astrop.
J., 343 (1989), pp. 874–887.
[40] M. S
CHULZ
,
On the 1470-year pacing of dansgaard-
oeschger warm events.
, Paleoceanography, 17 (2002),
pp. 4–1.
[41] M. S
CHULZ AND
M. M
UDELSEE
,
Manual de referen-
cia REDFIT 3.5. Estimating red-noise spectra directly from
unevenly spaced paleoclimatic time series.
, (2001).
[42]
,
REDFIT: Estimating red-noise spectra directly from
unevenly spaced paleoclimatic time series.
, Computers &
Geosciences, 28 (2002), pp. 421–426.
Analítika,
Revista de análisis estadístico
, 4 (2014), Vol. 8(2): 7-23
19